VS-6A Analog I/O Module

The VS-6A Analog I/O Module has 4 analog input and 2 analog output channels, also equips one accurate calibrated DC 10 V output.
This module can convert external analog inputs of voltage or current signals to 16 -bit digital values. When the FROM instruction is executed, the VS Main Unit reads out AD conversion data from the VS-6A module and stores that to registers. Thus, it provides the reference data for digital monitoring or controls.
This module provides an accurate calibration DC 10V voltage output to connect with variable resistor or position transducer easily.
Also, the module can use 16-bit digital set values to generate 2 channels of external voltage or current signal outputs. When the TO instruction is executed, the VS Main Unit copies DA source data to the respective memory at the VS-6A then the module's DA circuit converts the data to analog outputs for external loads.
The VS-6A Analog I/O Module requires a DC 24 V external power input for the isolated $D C$ to $D C$ regulated power to provide its $A D$ and $D A$ converters. Also, between the PLC inner circuit and the analog I / O are isolated by the Magnetic-coupler thus the module can get a stable AD / DA conversion. Please read following instructions before use.

- Product Exterior

- Product Specification

Analog Input Specification

Item	Voltage Input Spec.	Current Input Spec.	
	The voltage or current input switch is located on the module's right side also the operation mode BFM is required to set.		
Analog Input Range	$-10 \mathrm{~V} \sim+10 \mathrm{~V}$	$4 \sim 20 \mathrm{~mA}$	$-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$
Converted Value	$\begin{aligned} & -32000 \sim+32000 / \\ & -10000 \sim+10000 \end{aligned}$	0~16000	$\begin{aligned} & -16000 \sim+16000 / \\ & -20000 \sim+20000 \end{aligned}$
Input Resistance	$200 \mathrm{k} \Omega$	250Ω	250Ω
Max. Resolution	0.3125 mV	$1.25 \mu \mathrm{~A}$	$1.25 \mu \mathrm{~A}$
Overall Accuracy	- Ambient temp. $25 \pm 5^{\circ} \mathrm{C}$ is $\pm 0.3 \%$ full scale $(\pm 60 \mathrm{mV})$ - Ambient temp. $0 \sim 55^{\circ} \mathrm{C}$ is $\pm 0.5 \%$ full scale $(\pm 100 \mathrm{mV})$	- Ambient temp. $25 \pm 5^{\circ} \mathrm{C}$ is $\pm 120 \mu \mathrm{~A}$ - Ambient temp. $0 \sim 55^{\circ} \mathrm{C}$ is $\pm 200 \mu \mathrm{~A}$	- Ambient temp. $25 \pm 5^{\circ} \mathrm{C}$ is $\pm 0.3 \%$ full scale $(\pm 120 \mu \mathrm{~A})$ - Ambient temp. $0 \sim 55^{\circ} \mathrm{C}$ is $\pm 0.5 \%$ full scale ($\pm 200 \mu \mathrm{~A}$)
Max. Input Range	$-15 \mathrm{~V} \sim+15 \mathrm{~V}$	-32mA $\sim+32 m A$	-32mA $\sim+32 \mathrm{~mA}$
Conversion Curve Diagram	Mode 0 / Mode 1 $-10 \mathrm{~V} \sim+10 \mathrm{~V}$ voltage input Converted digital value	Mode 2 $4 \mathrm{~mA} \sim 20 \mathrm{~mA}$ current input Converted digital value	Mode 3 / Mode 4 $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$ current input Converted digital value

Analog output Specification

Item	Voltage Output Spec.	Current Output Spec.	
Analog Output Range	$-10 \mathrm{~V} \sim+10 \mathrm{~V}$	4~20mA	$-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$
Digital Set Range	$\begin{aligned} & \hline-32000 \sim+32000 / \\ & -10000 \sim+10000 \\ & \hline \end{aligned}$	0~32000	$\begin{aligned} & -32000 \sim+32000 / \\ & -20000 \sim+20000 \end{aligned}$
Load Resistance	$500 \Omega \sim 1 \mathrm{M} \Omega$	500Ω	500Ω
Max. Resolution	0.3125 mV	$0.625 \mu \mathrm{~A}$	$0.625 \mu \mathrm{~A}$
Overall Accuracy	- Ambient temp. $25 \pm 5^{\circ} \mathrm{C}$ is $\pm 0.3 \%$ full scale $(\pm 60 \mathrm{mV})$ - Ambient temp. $0 \sim 55^{\circ} \mathrm{C}$ is $\pm 0.5 \%$ full scale ($\pm 100 \mathrm{mV}$)	- Ambient temp. $25 \pm 5^{\circ} \mathrm{C}$ is $\pm 120 \mu \mathrm{~A}$ - Ambient temp. $0 \sim 55^{\circ} \mathrm{C}$ is $\pm 200 \mu \mathrm{~A}$	- Ambient temp. $25 \pm 5^{\circ} \mathrm{C}$ is $\pm 0.3 \%$ full scale $(\pm 120 \mu \mathrm{~A})$ - Ambient temp. $0 \sim 55^{\circ} \mathrm{C}$ is $\pm 0.5 \%$ full scale $(\pm 200 \mu \mathrm{~A})$
Conversion Curve Diagram	Mode 0 / Mode 1 $-10 \mathrm{~V} \sim+10 \mathrm{~V}$ voltage output Converted voltage output	Mode 2 $4 \mathrm{~mA} \sim 20 \mathrm{~m}$ Acurrent output	Mode 3 / Mode 4 $-20 \mathrm{~mA} \sim+20 \mathrm{~m}$ Acurrent output Converted current output

Basic Specification

Item	Specification
Response Time	1.2 ms
Accurate Calibration Voltage Output	DC $10 \mathrm{~V} \pm 0.5 \%, 60 \mathrm{~mA}$ (Max.)
Isolation Method	The external DC 24V input through an isolated DC/DC power to provide AD \& DA convert circuits; Magnetic-coupler isolation between PLC and analog circuits; no isolation between AI / AO channels
Power Consumption	DC 24V $\pm 20 \%, 210 \mathrm{~mA}($ Max.) from external + DC 5V 15mA from PLC's inner power

- Definition of Buffer Memory BFM in the VS-6A Module

The VS-6A module uses the BFMs to communicate with the VS Main Unit for the parameter setting, converted and set values access.

BFM No.	Component Description	
\#0	To assign the analog input modes of Al1~Al4. When the power is turned from OFF to ON, the default value is H 0000 .	
\#1	To set the average times of Al1.	When the power is turned from OFF to ON, the default value is 10 . The available range is $1 \sim 32,767$, otherwise it is equivalent to 10 .
\#2	To set the average times of Al2.	
\#3	To set the average times of Al3.	
\#4	To set the average times of Al4.	
\#5	Converted digital value of Al1 (the average times is designated by BFM \#1).	
\#6	Converted digital value of Al2 (the average times is designated by BFM \#2).	
\#7	Converted digital value of Al3 (the average times is designated by BFM \#3).	
\#8	Converted digital value of AI4 (the average times is designated by BFM \#4).	
\#20	To assign the analog output modes of $\mathrm{AO} 1 \sim \mathrm{AO} 2$. When the power is turned from OFF to ON, the default value is H 00 .	
\#21	The digital set value of AO1.	When the power is turned from OFF to ON, the default value is 0 .
\#21	The digital set value of AO2.	
\#23	To assign the holding modes of $\mathrm{AO} 1 \sim \mathrm{AO} 2$. When the power is turned from OFF to ON, the default value is H 00 .	
\#30	Identification code: VS-6A = K204 (can use the FROM instruction to check whether the place is this module or not)	
\#31	The version number of this module. (the content value $\square \square$ indicates Ver. $\square . \square$)	

BFM\#0 To appoint the modes of analog inputs: (the sliding switch should also consistent with the modes)

b15 BFM\#0 b0				Value of Nibble	Analog Input Mode	
Nibble \#4	Nibble \#3	Nibble \#2	Nibble \#1			
AI4	AI3	AI2	AI1	0	$-10 \mathrm{~V} \sim+10 \mathrm{~V}$ voltage input	Converted digital value: $-32000 \sim+32000$
	To assign input modes			1		Converted digital value: $-10000 \sim+10000$
				2	4mA $\sim 20 \mathrm{~mA}$ current input	Converted digital value: $0 \sim+16000$
				3	$-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$ current input	Converted digital value: $-16000 \sim+16000$
				4		Converted digital value: $-20000 \sim+20000$
				Other	Disabled	

Example: If the BFM \#0 of a VS-6A is set to be H5420, then
Al1: For $-10 \mathrm{~V} \sim+10 \mathrm{~V}$ voltage input, that will be converted to the value $-32,000 \sim+32,000$ at this mode.
Al2: For $4 \mathrm{~mA} \sim 20 \mathrm{~mA}$ current input, that will be converted to the value $0 \sim+16,000$ at this mode.
Al3: For $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}$ current input, that will be converted to the value $-32,000 \sim+32,000$ at this mode.
Al4: Disabled

BFM\#20 To appoint the mode of analog output:

b15 Nibble \#4	BFM\#20		b0	Value of Nibble 0	Analog Output Mode	
	Nibble \#3	Nibble \#2	Nibble \#1			
Null	Null	$\underbrace{\mathrm{AO} 2 \mathrm{AO} 1}_{$ To assign output modes $}$			$-10 \mathrm{~V} \sim+10 \mathrm{~V}$ voltage output	Digital set value: $-32000 \sim+32000$
				1		Digital set value: - 10000~+1000
				2	$4 \mathrm{~mA} \sim 20 \mathrm{~mA}$ current output	Digital set value: 0~+32000
				3	-20mA + 20 mA current output	Digital set value: $-32000 \sim+32000$
				4	20mA current output	Digital set value: $-20000 \sim+20000$
				Other	Disabled	

Example: If the BFM \#20 of a VS-6A is set to be H 20 , then
A01: For $-10 \mathrm{~V} \sim+10 \mathrm{~V}$ voltage output, that will use the digital set value $-32,000 \sim+32,000$ at this mode.
AO2: For $4 \mathrm{~mA} \sim 20 \mathrm{~mA}$ current output, that will use the digital set value $0 \sim+32,000$ at this mode.

BFM\#23 To appoint the output holding mode: (for the PLC status turns from RUN to STOP)

b15	BFM\#23		b0	If the value in the nibble $=0$, the channel will keep the last output, even PLC is STOP.
Nibble \#4	Nibble \#3	Nibble \#2	\#1	
Null	Null	AO2	AO1	If the value in the nibble $\neq 0$, the channel will change its digital set val at STOP.

- External Wiring

*1: Please use the Shield Twisted-Pair isolation cable for every analog input/output channel. Must keep the signal cable away from any power line (including the power of motor, valve or contactor) to prevent external interference or module damage.
*2: Please connect the end of cable shield to the FG terminal. If the noise is huge, should connect the FG to the terminal at the Main Unit.
*3: If the reading value of voltage/current signal is fluctuating or with electrically induced noise on the external wiring, please parallel connect a smoothing capacitor ($0.1 \mu \mathrm{~F} \sim 0.47 \mu \mathrm{~F}, 25 \mathrm{~V}$) between the input terminals.
*4: To set the operating modes of AI1~AI4, two things MUST be done:

1. Assign the relative nibbles of the BFM \#0.
2. Adjust the sliding switches on the right side of the module.

Al CH NO
12
1
FRH: V Upper position is for the voltage mode.
 Lower position (ON) is for the current mode.
*5: If the reading value of voltage/current signal is fluctuating or with electrically induced noise on the external wiring, please parallel connect a smoothing capacitor ($0.1 \mu \mathrm{~F} \sim 0.47 \mu \mathrm{~F}, 25 \mathrm{~V}$) between the input terminals.
*6: For every analog output channel, either voltage or current output can be used but not both at the same time.

- Example Program

The VS-6A is installed next to the Main Unit and became the $1^{\text {st. }}$ special module.
Its Al1~Al3 are used for $-10 \mathrm{~V} \sim 10 \mathrm{~V}$ inputs, Al 4 is used for $4 \sim 20 \mathrm{~mA}$ input. Input converted values of Al1~Al4 are sequentially stored at D100~D103.
Its AO 1 is used for $-10 \mathrm{~V} \sim 10 \mathrm{~V}$ output, AO 2 is used for $4 \sim 20 \mathrm{~mA}$ output. Output digital set values of $\mathrm{AO} 1 \sim \mathrm{AO} 2$ are sequentially stored at D7000~D7001.

| | FROM K1 K30 D0 K1 |
| :--- | :--- | :--- | :--- |
| Read the $1{ }^{\text {st. }}$ beginning | |

